Построение интерполяционного многочлена в форме Ньютона

Java   7 января 2012  Автор статьи:  

Данный метод вычисляет значение функции в заданной точке используя принятые на вход множество точек и множество значений в данных точках.

Реализация решения

[cc lang=»java» lines=»-1″]
public class Newton {
public static double f(double[] x, double[] fx, double myx) {
double ans = 0;
for (int i = 0; i < x.length; i++) { int k[] = new int[i+1]; double myf = 1; for (int j = 0; j < i+1; j++) { k[j] = j; } for (int j = 0; j < i; j++) { myf *= (myx - x[j]); } ans += myf * f1(fx, k, x); } return ans; } public static double f1(double[] fx, int[] k, double[] x) { if (k.length == 1) { return fx[k[0]]; } if (k.length == 2) { return (fx[k[0]] - fx[k[1]]) / (x[k[0]] - x[k[1]]); } int[] k1 = new int[k.length - 1]; int[] k2 = new int[k.length - 1]; for (int i = 0; i < k.length - 1; i++) { k1[i] = k[i]; k2[i] = k[i + 1]; } return (f1(fx, k1, x) - f1(fx, k2, x)) / (x[k[0]] - x[k[k.length - 1]]); } } [/cc]

Научиться программировать

  • на Delphi

  • на Java

  • на C++